

13. Nonveiller Lecture 21.06.2014, Zagreb

Utjecaj brzine smicanja na dinamičko i cikličko ponašanje tla i na parametre za odziv lokalnog tla pri potresu

Mladen Vučetić

Profesor građevinarstva Civil and Environmental Engineering Department University of California, Los Angeles – UCLA vucetic@ucla.edu Prikazani rezultati su dobiveni u nizu višegodišnjih istraživanja u kojima su učestvovali : (po abecednom redu prezimena)

> Dr. Macan **Doroudian** Dr. Chu-Chung **Hsu** Prof. Giuseppe **Lanzo** Prof. Leo **Matešić** Dr. Kentaro **Tabata**

Prva zapažanja i analize su iznesene 1986 u izveštaju:

Vucetic, M. (1986). "The Stress-Strain Behavior of an Offshore Clay under Irregular Cyclic Simple Shear Loading," Report No. CE-86-02, Civil Engineering Department, *Rensselaer Polytechnic Institute,* Troy, New York, 81 p.

Dok je zadnji članak objavljen 2010:

Tabata, K. and Vucetic, M. (2010). "Effect of Frequency on the Equivalent Viscous Damping Ratio of Soils at Small Cyclic Strains", *Proceedings of the 9th US National & 10th Canadian Conference on Earthquake Engineering*, Toronto, Canada, 25-29 July 2010, Published by the Earthquake Engineering Research Institute, 499 14th Street, Suite 320, Oakland, California, Volume 9. pp. 6834-6843.

Članci i izvještaji koji sadrže rezultate o utjecaju brzine smicanja koji su prikazani u ovom predavnju

- Dobry, R. and Vucetic, M., (1987). "State-of-the-Art Report: Dynamic Properties and Response of Soft Clay Deposits," *Proceedings of the International Symposium on Geotechnical Engineering of Soft Soils*, Mexico City, Editors: Mendoza, M.J. and Montanez, L, Publisher: Sociedad Mexicana de Mecanica de Suelos, Mexico City, August, Vol. 2, pp. 51-87.
- Doroudian, M., and Vucetic, M. (1995), "A direct simple shear device for measuring small-strain behavior", ASTM Geotechnical Testing Journal, GTJODJ, Vol. 18, No. 1, pp. 69-85.
- Doroudian, M. and Vucetić, M., (1997). "Development of 3-D Geotechnical Database and Its Application to the Evaluation of Nonlinear Site Response and Seismic Zonation", UCLA Research Report, No. ENG-97-186, Civil and Environmental Engineering Department, University of California, Los Angeles – UCLA, CA, 347 pages, September
- Doroudian, M. and Vucetic, M., (1998), "Small-Strain Testing in an NGI-type Direct Simple Shear Device," Proceedings of the 11th Danube-European Conference on Soil Mechanics and Geotechnical Engineering, Porec, Croatia, Publisher A.A. Balkema, pp. 687-693.
- Hsu, C-C., and Vucetic, M. (2002): "Dynamic and Cyclic Behavior of Soils Over a Wide Range of Shear Strains in NGI-type Simple Shear Testing Device", UCLA Reserarch Report No. ENG-02-228, Civil and Environmental Engineering Department, University of California, Los Angeles, January, 267p.
- Lanzo, G., Doroudian, M. and Vucetic, M. (1999). "Small-Strain Cylic Behavior of Augusta Clay in Simple Shear", Proceedings of the Second International Symposium on Pre-failure Deformation Characteristics of Geomaterials - IS Torino 99, Published by A.A. Balkema, Vol. 1, pp. 213- 219, Sept.
- Lanzo, G. and Vucetic, M. (1999): "Effect of Soil Plasticity on Damping Ratio at Small Cyclic Strains", Soils and Foundations, Vol 39, No. 4, pp. 131-141.
- Matesic, L. and Vucetic, M. (1998): "Results of geotechnical laboratory tests on soil samples from the UC Riverside Campus", Report for the University of California's Campus - Laboratory Collaboration (CLC) Program Research Project 'Estimation of the Ground Motion Exposure from Large Earthquakes at Four UC Campuses in Southern California', UCLA Research Report No. ENG-98-198, Civil and Environmental Engineering Department, University of California, Los Angeles, CA, November, 218 p.
- Matesic, L. & Vucetic, M. (2003), "Strain-Rate Effect on Soil Secant Shear Modulus at Small Cyclic Strains," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 6, pp, 536-549.
- Tabata, K., and Vucetic, M. (2004): "The Effects of the Rate of Loading and Frequency on the Behavior of Soils at Small Monotonic and Cyclic Shear Strains", UCLA Research Report No. ENG-04-251, Civil and Environmental Engineering Department, University of California, Los Angeles, CA, November, 289 p.
- Tabata, K. and Vucetic, M. (2010). "Effect of Frequency on the Equivalent Viscous Damping Ratio of Soils at Small Cyclic Strains", Proceedings of the 9th US National & 10th Canadian Conference on Earthquake Engineering, Toronto, Canada, 25-29 July 2010, Published by the Earthquake Engineering Research Institute, 499 14th Street, Suite 320, Oakland, California, Volume 9. pp. 6834-6843.
- Vucetic, M. (1986). "The Stress-Strain Behavior of an Offshore Clay under Irregular Cyclic Simple Shear Loading," Report No. CE-86-02, Civil Engineering Department, *Rensselaer Polytechnic Institute*, Troy, New York, 81 p.
- Vucetic, M., Lanzo, G., and Doroudian, M. (1998a), "Damping at Small Strains in Cyclic Simple Shear Test", ASCE Journal of Geotechnical and Geoenvironmental Eng., Vol. 124, No.7, pp.585-594.
- Vucetic, M., Lanzo, G., and Doroudian, M. (1998b), "Effect of the Shape of Cyclic Loading on Damping Ratio at Small Strains", Soils and Foundations, Vol. 38, No. 1, pp. 111-120.
- Vucetic, M. and Tabata, K. (2003): "Influence of Soil Type on the Effect of Strain Rate on Small-strain Cyclic Shear Modulus", Soils and Foundation, Vol. 43, No. 5, pp. 161-173.
- Vucetic, M, Tabata, K. and Matesic, L (2003). "Effect of Average Straining Rate on Shear Modulus at Small Cyclic Strains" *Proceedings, International Conference "Deformation Characteristics of Geomaterials"*, Lyon, 2003", Editors: Di Benedetto et al., Publisher: A.A., Balkema, Lisse, pp. 321-328.

U potresnom građevinarstvu jedan od tipičnih problema je odziv terena i objekata na seizmičke pomake i sile, tj. na seizmičke valove koji iz dubine dolaze na površinu terena.

Na ovoj skici se vidi kako su naslage tla podvrgnute utjecaju raznih seizmičkih valova, i kako rezultirajući površinski pomaci uzrokuju vibracije zgrade.

Karakterisitke seizmičkih valova, kao što su amplituda, frekvencija i smjer se mijenjaju sukladno dinamičkim i cikličkim karakteristikama tla. Slojevi tla tako mogu povećati ili smanjiti amplitide i dominantne frekvencije valova, što onda direktno utječe na pomake površine terena i odziv konstrukcija na terenu. Posljedice povećanja amplituda cikličkih pomaka po dubini i na površini trena, te frekvencije i trajanje valova mogu biti razarajuće:

Kod relativno velikih horizontalnih cikličkih pomaka u pjeskovitim tlima koja su potpuno saturirana može doći do velikih prirasta pornih pritisaka, smanjenja efektivnih napona, te gubitka krutosti i čvrstoće, i na kraju do likvefakcije.

Zaključak:

Poznavanje dinamičkih i cikličkih osobina tla i faktora koji na njih utječu je neophodno za uspješno projektiranje konstrukcija u potresnim područjima kao što su Hrvatska i Kalifornija, te mnogi drugi dijelovi Svijeta.

<u>U skaldu sa tim zaključkom ovo predavanje ima slijedeći raspored:</u>

- 1. Kratak opis modela za proračun odziva terena
- 2. Opis naprezanja i deformacija u tlu koje su sukladne tim modelima
- Opis parametara cikličkog ponašanj tla pri takvim naprezanjma i deformacijama
- 4. Listu faktora koji utječu na cikličke parametre ponašanja tla
- 5. Utjecaj brzine smicanja na dinamičko i cikličko ponašanje tla

dnu takvog terena

Postoje uglavnom dvije vrste proračuna kojima se analiziraju takvi idealni tereni:

Proračuni koji upotrebljavaju jednadžbu valova i linearne osobine tla u kombinaciji sa izvjesnim viskoznim prigušenjem (npr. kompjuterski program SHAKE od Schnabel P.B., Lysmer J.L., Seed H.B., 1972)

Proračuni koji koriste mehanički vibracioni sustav sa više stupnjeva slobode u kojem se kontinurani medij nelinearnog uslojenog tla opisuje nizom diskretnih masa spojenih nelinearnim oprugama i prigušivaćima (npr. kompjuterski program DESRA od Lee i Finn, 1978, te kasnije modifikacije tog programa)

2. Opis naprezanja i deformacija u tlu koje se sukladne gornjim modelima

U gornjim modelima se javljaju naprezanja i deformacije elementa tla prije i za vrijeme potresa kao što je to ovdje prikazano. U toj idealnoj situaciji potres prouzrokuje samo dodatna ciklička naprezanja čistog smicanja.

Takva naprezanja čistog smicanja se najbolje mogu za neko tlo ispitati u aparatu za jednostavno smicanje u kojem se dobiva slika cikličkog ponašanja kao što je to ovdje prikazano za jedan pijesak (iz Matasović i Vučetić, 1993).

Vidi se da je odnos posmičnog naprezanja i relativne posmične defromacije <u>u jednom ciklusu opisan</u> <u>cikličkom petljom</u>.

0.3

3. Parametri za opis cikličkog ponašanj tla pri naprezanjma i deformacijama kod čistog smicanja

lako je stvarno ponašanje tla za vrijeme potresa neravnomjerno, tj., opisuje se nizom neravnomjernih petlji raznih veličina, ono se u svrhu određivanja cikličkih osobina tla proučava i ispituje pod slijedećim idealnim uvjetima i pretpostavkama:

- puna ravnomjerna ciklička petlja je osnovni element ponašanja tla
- ta petlja je ravnomjerna jer je amplituda relativne posmične defromacije, γ_c , i posmičnog naprezanja, τ_c , jednaka u obadava smjera
- ta petlja je idealna jer je potpuno zatvorena
- cikličke osobine tla se opisuju nagibom takve petlje i njezinom površinom
- promjene osobina tla sa brojem ciklusa se opisuju promjenama petlji (uglavnom promjenama nagiba i površine) u odnosu na osobine početne petlje prvog ciklusa

Idealizirana petlja prvog ciklusa je određena sa:

- γ_c = amplitudom relativne posmične defromacije
- τ_c = amplitudom posmičnog naprezanja
- G_{max}= maksimalnim početnim sekantnim modulom kad γ_c teži nuli
- G_s= sekantnim modulom za dani γ_c i τ_c
- Površinom petlje koja je jednaka specifičnoj energiji, ΔW, potrošenoj za vrijeme trajanja petlje

Nagib petlje opisuje prosječnu posmičnu krutost tla u jednom ciklusu a predstavlja sekantni modul $G_s = \tau_c / \gamma_c$

 G_s/G_{max} = relativna krutost za dani γ_c u odnosu na najveću krutost za $\gamma_c \approx 0$

Iz površine petlje, ∆W, dobiva se ekvivalentan kvocijent kritičnog viskoznog prigušenja

$$\lambda = \frac{1}{4\pi} \frac{\Delta W}{\frac{\gamma_c \tau_c}{2}} = \frac{1}{4\pi} \frac{\Delta W}{W}$$

koji se upotrebljava u praksi dinamike tla.

G_{max} , G_s , (G_s/G_{max}) i λ

su dakle osnovne veličine (parametri) za opisivanje cikličkog ponašanja tla u prvom ciklusu, a isto tako i u kasnijim ciklusima kad se je struktura tla promijenila. Za vrijeme potresa amplitude $\gamma_c i \tau_c$ variraju od vrlo malih, koje su blizu nuli, do velikih koje se ponekad približavaju slomu tla. Sukladno tim varijacijama variraju i parametri G_{max} , G_s , (G_s/G_{max}) i λ .

U dinamici tla te se varijacije parametara izražavaju za određeno tlo sa krivuljama od kojih je najvažnija tzv. <u>skeletna krivulja</u>.

Skeletna krivulja spaja vrhove početnih cikličkih petlji i ima oblik slova S kao kičma skeleta (kostura). Ako se ide po osi γ , nagibi sukcesivnih sekanti skeletne krivulje opisuju prosječne krutosti za sve prve cikluse od $\gamma_c \approx 0$ do najvećeg γ_c koji odgovara slomu.

Krivulja monotonog (statičkog) opterećenja koje je vrlo slična skeletnoj krivulji 2 Skica prvih ciklusa iz tri pokusa na istom tlu Skeletna krivulja Skeletna krivulja

U pozitivnom kvadrantu dijagrama naprezanja i deformacija skeletna krivulja je vrlo slična krivulji koja povezuje krivulje početnih opterećenja u prvim ciklusima, te tako i krivulji monotonog (statičkog) naprezanja. Zbog toga se **skeletna krivulja približno može dobiti iz krivulje monotonog (statičkog) opterećenja** tla (pogledaj detaljniju analizu u Vučetić, 1986; Dobry i Vučetić, 1987).

U praksi dinamike tla se pozitivna grana skeletne krivulje tipično prikazuje kao krivulja smanjenja posmičnog modula, G_s , ili normaliziranog posmičnog modula, G_s/G_{max} , sa amplitudom, γ_c .

Kvocijent prigušenja se također prikazuje krivuljom promjene sa amplitudom γ_c .

Sve ove krivulje se tradicionalno prikazuju u polu-logaritamskom formatu kako bi se uvećala slika ponašanja pri malim deformacijama, γ_c , koje su najrelevantnije u dinamici tla.

Krivulje (G_s/G_{max} - log γ_c) i (λ - log γ_c), koje se dobivaju laboratorijskim ispitivanjma, su uz G_{max} , koji se tipično dobiva terenskim mjerenjima, najvažniji i često jedini podaci potrebni za analizu seizmičkog odziva terena.

4. Faktori koji utječu na cikličke parametre ponašanja tla

<u> G_{max} , $G_s i \lambda$, te tako i na krivulje (G_s/G_{max} - log γ_c) i (λ - log γ_c)</u>

Glavni faktori su: amplituda posmične relativne deformacije, broj ciklusa, indeks plastičnosti, koeficijent pora, početna konsolidaciona normalna efektivna naprezanja, stupanj prekonsolidacije, brzina i promjena brzine posmične deformacije, geološka starost naslage tla, i stupanj cementacije

EFFECT OF INCREASE OF VARIOUS FACTORS ON G_{max} , G/G_{max} AND DAMPING RATIO λ OF NORMALLY CONSOLIDATED AND MODERATELY OVERCONSOLIDATED CLAYS

[INCREASING FACTOR	G _{ma} ,	G/G _{ma} ,	λ
Tabela iz obry i Vučetić (1986)	Confining Pressure $\bar{\sigma}_0$ (or $\tilde{\sigma}_{vc}$)	Increases with $ar{\sigma}_{0}$	Stays constant or increases with $ar{\sigma}_{ m o}$	Stays constant or decreases with $\overline{\sigma}_0$
	Void Ralio e	Decreases with e	Increases with e	Decreases with e
	Geologic Age t	Increases with t	May increase with I	Decreases with I
	Cementation c	Increases with c	May increase with c	May decrease with c
	Overconsolidation OCR	Increases with OCR	Not affected	Not affected
	Plasticity Index I _p	 Increases with 1_p if DCR>1 Stays about constant if OCR = 1 	Increases with Ip	Decreases with I_{ρ}
	Cyclic Strain Ye		Decreases with y _c	Increases with γ_c
	Strain Rate ý (Frequency of cyclic loading)	Increases with $\dot{\mathbf{y}}$	 G increases with ý G/G_{max} probably not affected if G and G_{max} are measured at same ý 	Stays constant or may increase with \dot{y}
	Number of Loading Cycles N	Decreases after N cycles of large y _c but recovers later with time	Decreases after N cycles of large γ _c (G _{max} measured before N cycles)	Not significant for moderate y _c and N

D

A sada, nakon uvoda, kad se znaju svi potrebni pojmovi i veličine, biti će prikazan:

5. Utjecaj brzine, prosječne brzine i promjene brzine smicanja na dinamičko i cikličko ponašanje tla

Prikazati će se utjecaji tri aspekta brzine smicanja:

Konstantna brzina smicanja

$$\dot{\gamma} = \frac{d\gamma}{dt} = konst.$$

Prosječna brzina smicanja u jednom pravilnom ciklusu ako je frekvrencija f = 1/T

$$\dot{\gamma} = \frac{4\gamma_c}{T} = 4f\gamma_c$$

Promjenjljiva brzina smicanja

$$\dot{\gamma} = \frac{d\gamma}{dt} = promjenjljva$$

Da se odredi utjecaj brzine smicanja, tla su ispitivana na UCLA-u u dvije vrste aparata za jednostavno smicanje

Standardni aparat za jednostavno smicanje tipa NGI (NGI DSS device) (Bjerrum and Landva, 1966) Za smicanje od srednjih do velikih γ i γ_c.

Aparat za jednostavno smicanje dva ista paralelna uzorka tipa NGI (Dual-Specimen NGI DSS device – DSDSS device) (Doroudian and Vucetic,1995;1998). Za smicanje od <u>vrlo malih</u> do velikih γ i γ_c.

Efekti brzine smicanja pri monotonom smicanju

Vrlo poznati efekt brzine monotonog smicanja:

kod bržeg smicanja krutost materijala je veća.

Tako je krivulja bržeg smicanja uvijek iznad krivulje sporijeg smicanja. Efekti brzine smicanja su posljedica dvije srodne pojave koje se pojavljuju u viskoznim materijalima, tj., materijalima koji pružaju veći otpor pri bržem posmičnom deformiranju i u kojima se pod bilo kojim posmičnim naprezanjma mijenja unutarnja struktura (mikrostruktura).

Pojava puzanja

Povećanje deformacije pri konstantnom naprezanju (nakon povećanja naprezanje je blokirano)

Pojava relaksacije Smanjenje naprezanja pri konstantnoj deformaciji (nakon povećanja deformacija je blokirana)

Shear strain, 7

Usporedba krivulja naprezanja i deformacija dobivenih (a) kontinuiranim monotonim povećanjem neprezanja i (b) izmjeničnim koracima povećanja

naprezanja i stankama sa puzanjem

Usporedba krivulja naprezanja i deformacija dobivenih

- (a) kontinuiranim monotonim povećanjem deformacije i
- (b) izmjeničnim koracima povećanja deformacije i stankama sa relaksacijom

Pojava puzanja i relaksacije objašnjava također nelinearnost krivulje naprezanja i deformacija.

Budući da viskozni efekti puzanja i relaksacije postoje i kod vrlo malih (i najmanjih) deformacija, tlo je očito nelinearno i pri najmanjim deformacijama.

Uostalom, linearnost materijala je samo prikladan i privlačan koncept za praktične analize, ali ne i stvarnost. Ništa na ovom Svijetu nije savršeno linearno, pa tako niti ponašanje realnih materijala u koje spada tlo.

Utjecaj <u>konstantne</u> brzine monotonog smicanja pri vrlo malim deformacijama na (a) krivulje naprezanja i deformacija i (b) rezultirajuće krivulje smanjenja posmičnog modula

Utjecaj <u>promjenjljive</u> brzine monotonog smicanja pri vrlo malim deformacijama na: (a) krivulje naprezanja i deformacija, i (b) krivulje smanjenja posmičnog modula (Tabata i Vucetic, 2004)

Rezultirajuće normalizirane krivulje smanjenja posmičnog modula (Tabata i Vucetic, 2004)

Kada se brzina smicanja znatno povećava, veličina G_s/G_{max} prvo raste i onda pada.

U početku je efekt brzine smicanja "jači "od efekta nelinearnosti materijala pa G_s/G_{max} prvo raste. Kasnije, pri većim deformacijama, je nelinearnost materijala izraženija pa tako prevladava preko utjecaja povećanja brzine smicanja.

Efekti brzine smicanja pri cikličkom smicanju

Poznati efekt brzine cikličkog smicanja:

kad je frekvencija veća, prosječna brzina smicanja je veća, pa petlja ima veći nagib, što onda ukazuje na veću prosječnu krutost.

$$\dot{\gamma} = \frac{4\gamma_c}{T} = 4f\gamma_c \qquad f = \frac{\gamma}{4\gamma_c}$$

Pažnja: dijagrami (a) i (b) odgovaraju jednoj konstantnoj amplitudi γ_c , dok su na dijagramu (c) skicirani rezultati za dvije amplitude γ_c .

Utjecaj <u>prosječne</u> brzine smicanja i frekvencije na modul posmika, G_s

$$\dot{\gamma} = \frac{4\gamma_c}{T} = 4f\gamma_c$$

Prosječna brzina smicanja u jednom ciklusu

$$\alpha_{G} = \frac{\Delta G_{s}}{\Delta \log \dot{\gamma}} = \frac{(G_{s})_{\text{high}} - (G_{s})_{\text{low}}}{\log \dot{\gamma}_{\text{high}} - \log \dot{\gamma}_{\text{low}}} = \frac{(G_{s})_{\text{high}} - (G_{s})_{\text{low}}}{\log \frac{\dot{\gamma}_{\text{high}}}{\dot{\gamma}_{\text{low}}}}$$

Prametar utjecaja brzine smicanj na posmični modul, α_G

$$N_{\dot{\gamma}-G} = \frac{(G_S)_{\text{high}} - (G_S)_{\text{low}}}{\log \frac{\dot{\gamma}_{\text{high}}}{\dot{\gamma}_{\text{low}}}} \frac{1}{(G_S)_{\text{ref}}} = \frac{\alpha_G}{(G_S)_{\text{ref}}}$$

Faktor utjecaja brzine smicanjana posmični modul, N_{j-G} koji su uveli Isenhower i Stokoe (1981)

Za PI od 0 do 40, $N_{\dot{\gamma}-G}$ ide otprilike od 2% do 6%.

To znači da ako se za neki γ_c povećanjem frekvencije prosječna brzina smicanja poveća za 10 puta, G_s u pjescima će se povećati za 2% a u glinama kojima je PI=40 za 6%.

Trend faktora utjecaja brzine smicanja sa indeksom plastičnosti, Pl za različite nivoe γ_c (pijesci su predstavljeni sa Pl=0)

(iz Tabata i Vučetić, 2004 - bazirano na Matešić i Vučetić, 2003; te Vučetić, Tabata, i Matešić, 2003)

Prosječni odnosi između γ_c , $N_{\dot{\gamma}-G}$ i Pl (Tabata i Vucetic, 2004)

Utjecaj na krivulje smanjenja posmičnog modula

<u>Ako je prosječna brzina</u> <u>cikličkog smicanja</u> <u>konstantna pri raznim γ_c</u>

onda su G_s-logγ_c krivulje manje više paralelne, a (G_s/G_{max}-logγ_c) krivulje se preklapaju (iz Hsu i Vučetić, 2002, i Matešić i Vučetić, 2003)

Utjecaj brzine smicanja na

G_{max} (izvedeno iz Hsu i Vučetić, 2002, i Matešić i Vučetić, 2003)

Ako je frekvencija smicanja, f, konstantna pri raznim γ_c , što znači da sa povećanjem γ_c prosječna brzina smicanja raste, onda G_s -log γ_c krivulje više nisu paralelne , a (G_s/G_{max} -log γ_c) krivulje se ne preklapaju (izvedeno iz Hsu i Vučetić, 2002, i Matešić i Vučetić, 2003)

Ponašanje pijeska i gline pri cikličkom smicanju sa istom frekvencijom - osobine (G_s/G_{max} -log γ_c) krivulja za pijesak i glinu -

(Tabata i Vučetić, 2004; također analizirali Matešić i Vučetić, 2003)

 $f = \frac{\gamma}{4\gamma_c} = konst$ $\dot{\gamma} = \frac{4\gamma_c}{T} = 4f\gamma_c$

Kad *f*=konst., sa povećanjem γ_c prosječna brzina smicanja raste. U početku je efekt povećanja brzine smicanja "jači "od efekta nelinearnosti materijala pa G_s/G_{max} prvo raste sa γ_c i to preko 1.0 !

Kasnije, pri većim deformacijama, nelinearnost prevlada utjecaj povećanja brzine smicanja te G_s/G_{max} padne ispod 1.0 i nastavlja padati sa γ_c .

Pažnja: ovdje je kvocijent prigušenja λ normaliziran sa λ za *f*=0.1 Hz (Tabata i Vučetić, 2004)

Oblici cikličkih petlji za razne oblike smicanja (Vucetic et al., 1998b)

Treba primijetit da je površina cikličke petlje veća ako je absolutna površina ispod krivulje deformacije sa vremenom veća, tj. ako je tlo duže pod većim deformacijama.

U tom kontekstu je izveden parametar oblika cikličkog smicanja, θ , sa kojim se može mjeriti utjecaj oblika smicanja na kvocijent prigušenja, λ (Vučetić et al., 1998b)

(Tabata and Vučetić, 2004)

Trend kvocijenta prigušenja, λ , sa parametrom oblika cikličkog smicanja, θ , kod malih deformacija

Oblici cikličkih petlji i kvocijent prigušenja λ za četiri različita oblika smicanja dobiveni za kaolinsku glinu pri smicanju sa malim γ_c (Tabata and Vučetić, 2004)

Posljedice utjecaja sinusoidalnog oblika smicanja na krivulje povećanja kvocijenta prigušenja, λ , za pijesak i glinu

Skice cikličkih petlji za pijesak i glinu pri malim i velikim amplitudama, γ_c (Lanzo and Vučetić, 1999)

Križanje krivulja povećanja kvocijenta prigušenja, λ, za pijesak i glinu negdje između γ_c = 0.001% i 0.1% (Lanzo and Vučetić, 1999; Vučetić et al., 1998a; također dobiveno od Stokoe et. al, 1995, 1999)

Neki praktični rezultati istraživanja Unaprjeđenje krivulja smanjenja posmičnog modula (G_s/G_{max}- log γ_c) i krivulja kvocijenta prigušenja (λ- log γ_c)

Starije prosječne krivulje koje se dosta često koriste u praksi

Predložene nove prosječne krivulje

Prikazane krivulje su otprilike krivulje konstantne prosječne brzine cikličkog smicanja koje se mogu po potrebi modificirati (Doroudian and Vučetić, 1997)

Prigušenja pri malim γ_c su ispravno prikazana (EPRI report, 1993 – predloženo od Pyke na temelju analize u Vučetić 1986 ; pogledaj Vučetić et al., 1998a)

Zaključak:

- Brzina smicanja pri monotonom smicanju,
- prosječna brzina smicanja i frekvencija pri cikličkom smicanju, i
- promjena brzine smicanja za vrijeme monotonog i cikličkog smicanja

imaju zaista velike i zanimljive utjecaje na dinamičko i cikličko ponašanje tla, te tako i na parametre za analizu odziva terena na sile potresa. Hvala na pažnji!

Molim, ima li pitanja ??